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AIJIDad-Boiotin's asymptotic method is adopted for the iavestiption of dyllllllic response of a reetan­
p\ar structural panel with elastic edit constraints resemblinc a box structure. Experimental cletermiDation
on the frequency mponse is also included for comperison purpose. The metbod is proven to be extremely
versatile in solvina a broad class of the aforementioned problems.

I. INTRODUCTION
This study was motivated by the investigation of the dynamic response of a thin-walled
rectangular box which has wide applications in many industrial problems. Instrumentation
cabinets, transformer tanks and gear box casinas are just a few of many possible examples.
Hooker and O'Brien[l] used a finite-element method for the determination of natural frequency
and mode shapes for a closed steel box which was previously determined by Dickinson and
Warburton[2] who also investigated the natural frequencies of plate systems using the edge
effect method [3].

In studying the dynamic response of a thin-walled rectaDgu)ar box structure subjected to an
excitation, the problem frequently can be reduced to the determination of the response of each
of the wall panels if the wall thickness is small in comparison with the cross-sectional
dimensions. By neglecting any coupling effects, the panels can be treated analytically by
considering each one as a plate with different bou~dary conditions. For example, panel 1 as
shown in Fig. 1, may be modeled as shown in rig. 2, but with compliant supports at y =0 and
y =b, which include moment-resisting and deftection resistitIg springs. The stiffness of these
springs generally varies with x and y.

In solving such a problem, normally an approximate approach such as an energy method
must be employed. If one is interested in not only the fundamental frequency of vibration, but
also the response of higher modes, the results obtained by an energy approach become less
reliable as the number of modes goes higher. In contrast to this drawback, the asymptotic
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Fig. I.

t An abstract of this paper was presented at CANCAM 7S (see Ref. [S]).
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method due to Bolotin [4], can provide more accurate response results with very limited
computing work involved. This can be observed from the problem solved and presented in this
paper.

The method employed here is also often called the dynamic edge effect method, which is
capable of finding the eigenvalues and eigenfunctions for one class of homogeneous linear
boundary value problems in a rectangular region. According to this method, the asymptotic
solution for eigenfunctions is expressed as the sum of a generating (or interior) solution and a
corrective solution which is also called the "dynamic edge effect". The generating solution,
expressed as a product of trignometric functions, satisfies the governing equation, but in
general, does not satisfy the boundary conditions. The eigenvalues are determined from an
algebraic equation and expressed as a function of "wave numbers". For each subregion, one
constructs an asymptotic solution satisfying the governing equation and the conditions on the
boundary. The number of these solutions is equal to the number of subregions. By joining these
solutions together, one obtains an asymptotic solution for an eigenfunction of the entire region.
As one moves toward the internal region, all these solutions tend to the generating solution if
the dynamic edge elect is nondegenerate, i.e. the corrective solution is negligible in the internal
area.

In this paper, the Bolotin's asymptotic method is adopted for the investigation of dynamic
response of a structural panel. Experimental determination on the frequency response is also
carried out for comparison purposes.

2. FORMULATION OF THE PROBLEM

The governing equation of free motion of a thin, isotropic, elastic plate is

(1)

where V2 is the two-dimensional Laplacian operator, W= w(x,y,t), m is the mass per unit area,
D is the plate ftexural riaidity, and comma denotes the partial diferentation.

For natural vibrations, one may set

W(X,y,t) = W(x,y) sin tlJt

where tIJ is the circular frequency of vibration. Substitution of eqn (2) into eqn (I) gives

(2)

2

vZV2W =m; l¥. (3)

Along an elastically supported edp, e.g. y =0 as shown in Fig. 2, the spring stifness
usuaUy vary with X. In order to simplify the analysis, these sprinp are considered as constant
along the length of the boundary. Then the shear force and bending moment along this edge can
be related to the deftection and slope through the translational and rotational spring constants r
and z, respectively, i.e. along x = 0,

V(O) = r W(O)

M(O) =z W'(O)

Substituting for the shear force and bending moment,

mw-'(O) =r W(O)

EIW"(O) =-z W'(O).

Since the stiifnesses are considered constant, and writing

(4)

(5)

(6)

(7)
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then the boundary conditions at y =0 are

W"= -ZoW'

W"'= RoW

while at y =b the boundary conditions are

W"=ZBW'

W'" =RBlv.
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(8)

(9)

(10)

(11)

Several limiting cases of interest can be examined by limiting constants Zo. ZB and Ro. RB•
If both Zo-UCl and Zs-+oo while Ro-+oo and RB-+ oo, the boundary conditions along the edges
become those of clamped edges. Similarly, letting Ro-+oo and Rs-+oo while Zo-+O and ZB-+O,
the edges are simply supported.

The rectangUlar plate under consideration is divided into regions as shown in F'II. 3. .Region
(0) is considered ftee-sufticiently far from the boundaries that it is not iDIueIleed by any
stitfenina of the plate along the bouDdaries. Following Bolotin's method, the solution of the
equilibrium equation for this region is assumed to be

(12)

In the boundary reaions (1-4) the solutions are those which satisfy the boundary conditions
(except in the neiabborbood of corners) and asymptotic:ally approach the interior re,ion
solution at the intersection of the region boundaries. The solutions for each of the relions (1-4)
are respectively

W,(x,y) ={D, exp [- (k I
2+ 2k2~'/2X]+AI[sin (klx)

+B 2 coS (klx)lHsin (k21)+C cos (k21)]

Wix.y) ={D:! exp [- (k,2 +2k22)1~4J - x)] +A21sin (lclx)]

+ B2 cos (lelx)lHsin (le2y) +C cos (le21»

W,<x,y) ={1JJ exp [ - (kl+ 2kl~\/2y]+A,{sin (lc21)

+ C, cos (1c2y)}Hsin (Ic\Y)+ B cos (1,x)]

W..(x,y) ={D4 exp [-(k22+21c,~1~b - y)]+ Adsin(k21)

+C4 cos (le21)]}[sin (k,x) +B cos Ie,x)].

(13)

(14)

(IS)

(16)

Constants lei and k2 are the spatial frequencies or wave numbers for the natural frequene ies
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of the plate. Since these boundary regions must converge to the interior region solution then

(17)

(18)

(19)

Also, let AS. F I and AC. F'1' then invoking two boundary conditions for each of the
bouDdaries at X"" 0 and x "" a, and substituting into eqns (13) and (14) respectively, produces
four boJDoIeneous equations in A, Flo DI and D". For a non-trivial solution it is required that
the determiaant of the coeticients to be zero. Expandina the determinant yields a characteristic
equation for vibrations proplpting in the x-direction. This equation is transcendental in kl and
k'1' Similarly, invokiDa boundary conditions at y =0 and y =b produces a second transcen­
dental equation in kl and k'1' Solving the two characteristic: equatioas simukaDeously gives
eipnvalues for kl and k'1' The natural frequencies of the plate are given by

(20)

3. CHARACTERISTIC EQUATIONS AND THEIR SOLUTIONS

RecaUi.. the model of a panel of a box structure with a cantilevered base and an open end
(F'lI- 2), the natural frequencies of oscillation can be determined -using the boundary conditions
for the compliant edges.

F'U'St, consider the cantilever boundary, x =O. The boundary conditions are

WI,..(O,y)=O

where W, refers to (13).
The boundary at x "" a is free, it cannot support a shear force or bendina moment, i.e.

W2,.a(a,y) =0

W2,.ux(a,y) =o.

(21)

(22)

(23)

(24)

SubI&ituaiq (13) and (14) into these boundary conditions yields four equations in D h D", A
and FI as follows:

(25)

(26)

(27)

(28)

Call the determinant of the coetlicients of these four equations by D". Expanding this
determinant and setting equal to zero, one has the characteristic equation

(29)

Considering now the boundary conditions along the boundaries with elastic constraints,
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y = 0 and y =b, let Zo =ZB =Z and Ro =RB = R for simplification purposes, then

W3,"(x,0) .. - ZW3,,(x,0)

W3.",(x,O) =RW3(x,0)

W...",(x,b) =RW..<x,b).

S7S

(30)

(31)

(32)

(33)

Substituting (15) and (16) into these boundary conditions yields four equations in A, D.., A
and F2• These are

[(kl +2k?) - Z(k2
2+2kt2)tn:J A +Zk2A - k2

2F2 = 0 (34)

[R + (k,'+2kt2f2] A +klA +RF, .. 0 (35)

[(k2' +2kt~ - Z(k,2+ 2kt~·n:J D.. + [Zk, cos (Ie,b)

- kl sin (k2b)) A - [Zk, sin (k2b)+k2
2

COS (k,b») F2 • 0 (36)

[(kl+ 2kt~-R] D.. - [lel cos (k2b)+R sin (k,b)] A+[lel sin (k,b)- R cos (le2b)] F2 • 0.· (37)

The cletermiDant of the coefIicilmts of these four equaDoas is tedious to evaluate, Iutead,
by coDltl'liDiq R and Z, cbaract&ristic ~JlI can be clerived for dilerent bouDdary
conditions of interest. Lettin& R ..00, and IeUiDa Z..0, the boundaries are simply supported.
For this cue, the cbaracteriatic equation obtained by seuiDa the determinant equal to zero is

sin(le2b)-0.

To produce damped boundaries, let both R..oo and Z..00. The characteristic equation is

(38)

(39)

Eiaenvalues for IctG and 1c2b are obtained by IOlviDa eqns (29) and (39) or eqns (29) and (38)
simultaneously. The eileavalues obtained will be depeDIeat on 1M ratio of plate cIimenaions
a/b. As an example, ftnt consider a plate with cantilever-cllltilever-fne canthver bouDdaries,
Usiq iteration scheme, Ic.G and k2b are determined (Table 1). 0Dce the plate dimensions are
given, then the spatial frequencies Ie. and 1c2 are computed (Table 2).

For plates made from 0.060 in. 0.5 DUD) thick aluminum, one bas

E .. 10.0 x lO'psi. 68.9S ON/m2

1'=0.32

p =0.097lb/in3
- 2710 kalm3

•

k1a • 11
&~_o .n0-2.0 ._:L.!I

1.053 0.790 ••700 4••
5.51' 5.346 ••443 4.1'3
7.234 7.442 ••257 4.055

11.320 11.1'0 3.104 3.700
U.lto 14.010 3.'" 3."
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Table 2. Spatial frequencies for reclal\iUlar plates with C-C-F-C boundaries·

k
1 k

2 k2 + k2
1 2

0.088 0.066 0.783 0.783 0.621 0.617

0.460 0.446 0.740 0.716 0.757 0.712

0.603 0.620 0.710 0.675 0.868 0.841

0.943 0.933 0.651 0.617 1.313 1.251

1.158 1.168 0.650 0.601 1.764 1.724

*'lh. fint col_ IDler uch hudilll 18 fu .-12" (3051.) .. b-6" (tsZ-) •
....11. tile aec:llIIll col_ 18 for .-12" (30'-) aIIll b-8" (20'-).

Substituting these and the values from Table 2 into eqn (20) gives frequencies as sbown in
Table 3.

4. EXPERIMENTAL WORK

The purpose of the experimental work was to obtain the dynamic response data and to
compare the results to those predicted by analytic work. The natural frequencies of the
structure were determined and the mode shapes were observed.

A thin-wall rectlDlu1ar box structure with an open end and a cantilevered base, dimensions
12 x 8 x 6 in. (305 x 203 x 152 mm), was constructed from a sheet of 0.06 in. (1.5 mm) thick
aluminum plate. The box structure was mounted in a shaker table, MB Electronics M*J EA21S0
Vibration Exciter, with a mountina bracket fixed to the contilevered base. The sbaker table was
then driven by the exciter control, and the frequency scan of the exciter control eDpted. A
frequency ranae of S-SOOO Hz was scanned. The resonaat frequencies of a peel'on the box
structure were decermiDeclby spreadiqa thin layerof salton the paae1 andadjuatinatbefrequency
frequency control until the formaDon of nodal lines on the panel was observed.

The fint 'five natural tlequencies of a 12 x 6 in. panel on 'die box structure and the
corresponding mode s~s were determined (Fig. 4). The analytically and experimentally
determined natural frequencies are compared in Table 4.

In order to compare experimental and analytic results, the effect of all assumptions made in
experimentation must be assessed. The fint assumption made was that the edae CODItraints on
the model of the box structure were very stitf-tbe panel on the box could be considered as
baviol cantilever-eantilever-free-cantilever boundaries. This consideration would indicate that

Table 3. Frequency, Hz

~. s ,,, plate (30'- 12" s ." plate (30'-
's U28) x 20,..)

f 1 360 358

'2 440 413

f 3
503 488

f4
761 725

f 5
1023 1000

c c c c c
,,--.. ;0-'-" ~ r-\:. : t· \ ......,i=---':...

. ,
~;p-_., i J f \ r··. . ~ ". ;,_.,.. J \

R -.,..._( R R ~ J R R R R i : R R ! \ R
:' i .;......:. , \ . .

I.. . . ~ ~ "•••••••-'! { ) ~.. } >..~~ i I •

i'l....... ••••-<.;.-.....\ \ I .... I \ i
F F F F F

Fig. 4.
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ompensono C

CA1culatecl ....-- Differnc:e
Pr8fll*lCY (liz) preq~ (k) '1

£1 360 290 24'1

£2 440 360 2n

£3 503 510 1.4'1

£4 761 750 1.4'1

f 5 1023 1090 6.0'1

Table" C

the natural frequencies c:alculated for the idealized panel would be slightly higher than the
analytic results of the actual panel since the 1atter bas some compliancy at the boundaries. As
the torsional stiffness of the boundary varies from zero to infinite, the natural frequencies
increase.

Coupling effects induced by structure panels with adjacent boundaries, assumed negiigible,
and errors mtroduced by the asymptotic approximation, both discussed in the next section, are
sources of analytic discrepancy with experimental work.

The resonant frequencies determined experimentally were not the natural frequencies of
free vibration, but the frequencies of forced vibration. However, from the sharpness of the
resonances observed, it was concluded that the natural frequencies of free vibration occurred at
the resonant frequencies.

A final assumption made in the experimental work was that the mountina bracket was
sufticiently riIid that it did not introduce any couplina effects between the box structure and the
shaker table.

S. DISCUSSIONS AND CONCLUSIONS

The close correlation between the c:alculated Datura1 frequencies of a panel of a ~·walled
box structure and the experimentally determined natural frequencies proves the merit of
Bolotin's asymptotic method, despite the fact that certain deviations exist. in the ftrst two
modes. The Rayleilb-Ritz method, which would provide a more accurate determiDatioD for the
fundamental frequency, would be unable to determine the hiaher natural frequencies with such
accuracy.

The reason for the inaccuracy of the asymptotic method at the lower frequencies can be
seen in the model of the plate with interior and bouDdary reaions as shown in Pia. 3. One
assumption of the asymptotic .solution is that the interior rqion (region 0) is assumed to be free
from the inftuence of the stiftening effects of the constrained boundaries. This assumption
poses a question of dea:ree. For very large plates, the edJe stiffening effects are minimal at the
interior, but for small plates, the interior region is affected by the stiffened boundaries.

r
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Figure 5 shows a plane cutting the interior region parallel to the y-z plane. From this
cross section, waves propapting in the y-direction can be examined. The Bolotin solution
assumes that the waves in regions 3 and 4 decay exponentially to match waves in region 0 at the
region divisions. For this to occur, however, the length of the waves in each region must be
much shorter than the width of the region (Fig. 6). Since this does not occur in the range of low
natural frequency, it therefore introduces a significant error in the determination of the lower
natural frequencies. For example, from eqn (13), it is seen that the exponential term at a specific
value of x decreases as the frequency til (eqn 20) increases. Hence the errors decrease with
increase in frequency.

In conclusion, it may be stated that the asymptotic method has be'en proven extremely
versatile in solving a broad class of problems dealing with the determination of natural
frequencies of vibration of rectangUlar panels with elastic edge constraints. Its use in studying
the dynamic response of box-type structure is limited only by its inability to accurately
determine the fundamental frequency, and the complexity of the characteristic equations
involved.
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